Constructing a working, reliable, secure, and cost effective communications network that provides for the needs of the RTO, the Local Balancing Authority (LBA), generation power plants, and the electric utilities is a difficult task to accomplish.
In order to manage and keep its transmission network stable, each RTO now requires most or all of the following data to be exchanged – every two seconds – with every connected Utility, Power Plant (POI), and/or Substation (POD) in its region:
In addition, accumulated hourly MWh and MVARh data and hourly offer curves must be submitted daily.
Each RTO has developed a set of standards by which each connected utility is required to communicate. [see Figure 2] Usually the RTO will provide:
Most power plants and substations are already interconnected to a utility-wide System Control and Data Acquisition (SCADA) system through that utility’s own communications infrastructure, so most additional network connections to the RTO and required protocols are just one more piece of an existing communications network; but some aren’t. Some electric utilities and/or IPP owned power plants are still receiving their run schedules by phone, fax, and email and, for them, operating in a new, integrated market environment brings new communication challenges.
Full service electric utilities effectively operate and maintain at least three separate, internal, data networks – a business Local Area Network (LAN), a generation control LAN, and a transmission control LAN. (For security, reliability, and competitive market issues, none of them are allowed to share data directly with the others.) Also, each RTO maintains at least four different business and control models (in addition to system models developed for long range planning) to balance loads, resources, and the transmission system: a Day-Ahead / Real Time model, a commercial model, a network model, and a Financial Transmission Rights (FTR) model. Each of these RTO models needs to exchange data with one or more of the utility networks throughout the day, every day, in order for 1) the RTO to maintain network stability, 2) the connected utilities to make the adjustments to their equipment as directed by the RTO and, 3) the RTO to calculate costs for settlements.
When an electric utility, power plant or load (that isn’t already connected to an RTO) chooses to (or is required to) connect to an RTO, it must set up a highly reliable data hub and network capable of accommodating at least two independent, point-to-point data paths and an Internet connection to the RTO and redundant, independent, network connections to each plant and/or load (if not already in place). Technically, this data hub will require separate routers, firewalls, and servers for each data path and Internet connection to the RTO, secure communications with each power plant and load and must be able to 1) gather all of the required data, 2) convert it into the format and protocol specified by the RTO (usually ICCP with XML back-up), 3) send it to the RTO over secure data lines, 4) receive control data from the RTO, 5) convert it to a format the utility, plant and/or load control system can understands, and 6) disseminate the information to the various controls systems so they can react to the orders from the RTO.
Financially, this type of data hub communications system can require a significant investment (the costs vary based on a variety of factors and options chosen) but the risks of not “hardening” the data hub include missed opportunities, “failure to perform” costs, and even fines.
While these complex networks generally enhance reliability and efficiency, they do present challenges to utilities and an effective and integrated communications plan can help utilities meet those challenges.
Many mature RTOs (MISO, PJM, etc.) have already evolved to the integrated market model and issued communications protocols; however, there are many RTOs and potential RTOs in the process of developing communications requirements, so it will be important for utilities to stay abreast of and/or participate in the development of these requirements. The key issues for electric utilities that are going to be operating in an RTO environment are:
1) Evaluate their existing communications networks, 2) Develop transition plans the meet their current and foreseen needs, and 3) Support the implementation of these plans either by direct project management or oversight of contractors.
In the beginning (of the electrical industry evolution), power plants stood alone, fed some distribution lines, and customers had lights, fans, and pumps – and life was simple and good. Today, most of our load requirements and power supply arrangements are managed by RTO’s through a complex communications network owned and operated by a combination of the RTO’s, communications service providers, and electric utilities. While these complex networks generally enhance reliability and efficiency, they do present challenges to utilities and an effective and integrated communications plan can help utilities meet those challenges.
For more information or to comment on this article, contact:
GDS Associates, Inc. – Austin, TX
512.541.3165